

ConvaTec neria[™] guard

AN INNOVATIVE, TRUSTED, AND SUSTAINABLE SOLUTION DRIVEN BY USER FEEDBACK

MATHILDE CROS • OLIVIA LEE • BENJAMIN MEILHAC • GIULIA GOTTI • MARCIN ZELENT

THE PROBLEM

ConvaTec produces more than **100 million** infusion devices a year resulting in a huge amount of **plastic waste**, which must be thrown away as the device becomes **biohazardous** after just one use.

ConvaTec wants to become **carbon neutral by 2045** while maintaining **user safety** and following **regulatory requirements.**

THE REAL PROBLEM

Diabetic users are **demanding** a better way to reuse and recycle their infusion products. Some are using pliers to dismantle their devices, putting their safety at risk.

How can Convatec fulfill this unmet demand?

Dexcom G6 Inserter					
Subscribe	凸 297	7	A Share	$\underline{\downarrow}$ Download	
Continous Glucose Monitor (CGM), you end up with a lot of trash, including the packaging and the large r is technically a sharps container and it can not go in the recycling bin.					
when I started using the Dexcom G6 was how to recycle your Dexcom G6 inserter, simply because the soul,					

But use a bigger and better screwdriver to pry it open. And be careful with that too. Or if you have a vice use it to pop the plastic rivets. That's good quality plastic should be recyclable? Should start a petition to present to Dexcom. I'd like to sign it.

Reply

When I first saw these thing I was absolutely amazed how much garbage they make. I kept thinking "Why can't this thing be like shaving razor blades?" - Where the big piece of plastic would be like the handle then you insert a small cartridge that contains the sharps and the part that sticks to you.

GIVE THE USERS WHAT THEY WANT

Safety, ease of use, and recyclability

APPLICATOR

- Outer casing and "push" mechanism.
- Made out of recycled material.
- Cleaned and reused indefinitely, no need for sterilization.
- Recycled at end of life.

BASE

- Includes needle, tubing, and adhesive patch.
- Made out of virgin materials and sterilized.
- Replaced after one use for safety reasons.

ONE MONTH SUPPLY (CURRENT DESIGN)

ONE MONTH SUPPLY (PROPOSED DESIGN)

STAKEHOLDER BENEFITS

Less Plastic Waste

- Optimized manufacturing
- Greater recyclability

Reduced Emissions

- Reduced medical-grade material
- Reduced carbon footprint

User Risks & Safety

 Less risk of injury, less dismantling

Competitive Advantage

- Recycling alternatives
- Industry leader advantage threatened

Cost Savings & Financial Gain

- Optimized manufacturing and sterilization
- EBIT gain of 42%

ENVIRONMENTAL BENEFITS

SUMMARY

- Less biohazardous waste leads to greater End of life recyclability.
- Less required medical production leads to greater Sterilisation efficiency.
- SKU separation leads to greater overall packaging efficiency.
- Less required medical-grade and virgin material leads to greater utilization of materials.
- Resulting in a reduction of more than 1/3rd of the LCA emissions.

THANK YOU FOR LISTENING! ANY QUESTIONS?

MATHILDE CROS

BSc Double-Major in Mathematics and Computer Science, Biology Minor

École Polytechnique, Paris, France

MARCIN ZELENT

BSc in Software Development, KEA, Copenhagen, Denmark

Senior Developer at Kraftwerk, Denmark

BENJAMIN MEILHAC

MSc in Management of Innovation and Business Development

Copenhagen Business School, Denmark

Roskilde University, Denmark

GIULIA GOTTI

MA in Cultural Analysis and Communication

OLIVIA LEE

BA in Design, International Relations, and Communications

University of Auckland, New Zealand

PROPOSED APPLICATOR & NEEDLE DESIGN

Financial Gain (1/2)

- Key Numbers & Metrics 1.4.1
 - Group EBIT = \$400,000,000
 - Infusion Care Revenue (R) = \$130,000,000
 - COGS = \$130,000,000
 - SG&A = \$120,000,000
 - EBIT = 60,000,000

COGS Margin =
$$\frac{COGS}{R} = \frac{\$130,000,000}{\$310,000,000} = 41.94\%$$

SG&A Margin = $\frac{SG\&A}{R} = \frac{\$120,000,000}{\$310,000,000} = 38.71\%$
EBIT Margin = $\frac{EBIT}{R} = \frac{\$60,000,000}{\$310,000,000} = 19.35\%$

- **Cost Structure** 1.4.2
 - Assumption 1: Average Market Price = \$10 Price = \$10

SG&A per Unit = Price * SG&A Margin = 10 * 38.71% = 3.87Profit per Unit = Price * EBIT Margin = 10 * 19.35% = 1.94

COGS per Unit = Price * COGS Margin = 10 * 41.94% = 4.19

• Assumption 2: Materials = 50%, Labor = 20%, Overhead = 30%COGS Materials = COGS per Unit * 50% = \$4.19 * 50% = \$2.10COGS Labor = COGS per Unit * 20% = \$4.19 * 20% = \$0.84COGS Overhead = COGS per Unit * 30% = \$4.19 * 30% = \$1.26

• Assumption 3: Feasible to Reduce Raw Materials by 39% New COGS per Unit = (Materials * 0.61) + Labor + Overheard = (\$2.10 * 0.61) + \$0.84 + \$1.26 = \$3.38New Profit per Unit = Price - (New COGS per Unit + SG&A per Unit) = \$10 - (\$3.38 + \$3.87) = \$2.75

Financial Gain (2/2)

1.4.3 EBIT Margin

- New EBIT Margin = $\frac{\text{New Profit per Unit}}{\text{Price}} = \frac{\$2.75}{\$10} = 27.54\$$

– EBIT Margin Gain = 27.53% - 19.35% = 8.18%

- New EBIT = R * New EBIT Margin = 310,000,000 * 27.54%= 85,350,000

- EBIT Gain = New EBIT - EBIT = \$85,350,000 - \$60,000,000= \$25,350,000

 $- \text{ Infusion EBIT \%Gain} = \frac{\text{EBIT Gain}}{\text{EBIT}} = \frac{\$25,350,000}{\$60,000,000} = 42.25\%$ $- \text{ Group EBIT \%Gain} = \frac{(\text{Group EBIT} + \text{EBIT Gain})}{\text{Group EBIT}} - 1$ $= \frac{\$400,000,000 + \$25,350,000}{\$400,000,000} - 1 = 6.34\%$

Carbon Emission: Sterilization

We assumed that by separating the product into two components we would save 40% of the amount of surface we need to sterilize.

- 430 gCO_2e . * 42% sterilization ratio from LCA \approx 180.6 gCO_2e . emitted from sterilization per use.
- 180.6 gCO_2e . * 40% sterilization savings \approx 72.24 gCO_2e . saved per use.

That is about **23.2% gCO2e. savings** on sterilisation!

Carbon Emission: Packaging (1/2)

The initial packaging can be split in two parts mall Part:

Big Patten 85ml

For the **separable sterilised part**, we estimated that only 60mL of packaging were necessary, i.e. saving about 53% of the original 130mL packaging.

- 430 gCO_2e . * 12% packaging ratio from LCA $\approx 51.6 \ gCO_2e$. emitted for biohazard part packaging per use.
- 51.6 gCO_2e . * 53% packaging savings $\approx 27.3 \ gCO_2e$. saved per use.

Carbon Emission: Packaging (2/2)

We would still need to package the applicator unsterilised part. We estimated that in this case 105mL of packaging were necessary, i.e. saving about 20% of the original 130mL packaging.

- 51.6 gCO_2e . * 80% packaging used $\approx 41.3 \ gCO_2e$. needed per applicator separate packaging.
- However we assumed users can re-use this applicator up to 30 times, so $\frac{41.3}{30} \approx 1.38 \ gCO_2 e$. extra needed per infusion.
- Total gCO_2e . savings for one use of the separated product's packaging: $27.3 - 1.38 = 25.92 \ gCO_2e$.

That is about **50.2% of gCO2e. of savings** on packaging!

Carbon Emission & Plastic Usage: The Stabiliser (1/2)

Carbon Emissions from the Packaging of the Stabiliser:

- Our prototype needs a volume needed to package of about $302.9cm^3$.
- From the *gCO2e*. from the initial product's packaging, we estimate at $302.9 * \frac{51.6}{130} = 120.24gCO2e$. the carbon emissions from the packaging.

Amount of plastic needed in the Stabiliser:

- The volume of our first prototype for a stabiliser is of about $255 cm^3$.
- The volumetric mass of PP is of about $900kg/m^3$, i.e $0.9g/cm^3$, so: 255.23 * 0.9 = 229.71g of PP needed per stabiliser.

This looks like a lot, but actually....

Carbon Emission & Plastic Usage: The Stabiliser (2/2)

We can use **recycled materials** to build our stabiliser!

- 10.7g is our estimate of the amount of PP in our new applicator.
- Reusing the plastic from defective batches in manufacture to build these stabilisers, $229.72/10.7 \approx 21.5$.

So reusing **22** applicators worth of plastic would be enough to build a stabiliser!

The stabiliser **isn't single use**, we estimated it had a year of lifetime (≈ 122 uses).

- $\frac{229.72}{122} \approx 1.88g$ of additional plastic per use.
- $\frac{120.24}{122} \approx 0.98 gCO2e$. of additional carbon emissions per use.

Which is very negligible! And not all patients, will need/want to buy a stabiliser!